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Imide-bridged diferrocene for protonation-controlled regulation
of electronic communication
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Abstract—The imide-bridged diferrocene was synthesized and characterized, permitting the protonation-controlled regulation for
the electronic communication between the two ferrocenyl moieties.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Preparation of the imide-bridged diferrocene 1.
Recently, there has been considerable interest in the
development of switchable molecular systems.1 Bimetal-
lic complexes composed of redox-active transition met-
als and bridging spacers have received much attention
as functional materials, in which electronic communica-
tion between two identical redox centers is focused on.2

Control of the electronic communication is considered
to be one of the important factors in the application
to a wide variety of molecular devices.3 The control of
the electronic communication by protonation has been
investigated in only some cases.3h,j–m,p A variety of mole-
cules composed of multiple ferrocenyl units have been
investigated due to facile organic functionalization,
chemical stability, and reversible redox properties.4 In
this context, we herein report a new type of the imide-
bridged diferrocene for protonation-controlled regula-
tion of the electronic communication.

Diferrocene molecule is designed to be connected by the
N-(pyridin-2-yl) imide bridge. N-(Ferrocenecarbonyl)-
N-(pyridin-2-yl)ferrocenecarboxamide (1) was predomi-
nantly prepared in one step by the reaction of (chloro-
carbonyl)ferrocene with 1 equiv of 2-aminopyridine in
the presence of triethylamine and a catalytic amount
of 4-(dimethylamino)pyridine in 79% yield according
to a previous paper (Scheme 1).5,6 The single-crystal
X-ray structure determination of 1 reveals the imide-
bridged structure as shown in Figure 1.7 p-Conjugation
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of 1 would require the orientation of each Cp ring of the
ferrocenyl moieties within a limited range of parallel to
the plane of the C(ipso)–CO(bridging) bond. The steric
repulsion between the ferrocenyl moieties, however, re-
sulted in the rotation of each Cp ring away from this ori-
entation, giving a twist conformation to set the observed
b-angle, defined as the angle between the planes of the
cyclopentadienyl ring and the C(ipso)–CO(bridging)
bond (20.6� for C(1)–C(2)–C(3)–C(4)–C(5) and C(1)–
C(51)O(1), 20.4� for C(11)–C(12)–C(13)–C(14)–C(15)
and C(11)–C(52)O(2)), and dihedral angle between the
planes of the C(ipso)–CO(bridging) bond and the
C(51)–N(1)–C(52) bond (35.4� for C(1)–C(51)O(1) and
the C(51)–N(1)–C(52), 36.0� for C(11)–C(52)O(2) and
C(51)–N(1)–C(52)), in which the C(1)–C(11) distance is
3.09 Å. This conformation was also supported in solu-
tion by the 1H NMR spectrum; the upfield chemical
shift for the protons of the C(a) atoms of the Cp rings
was observed in comparison with those of 2-pyridyl-
ferrocenecarboxamide (2); 1: 4.56 ppm, 2: 4.91 ppm.
Furthermore, the dihedral angle, 58.3�, between the
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Figure 2. Cyclic voltammograms of (a) 1 in the presence of 1 equiv of
DCC, (b) 1 in the presence of 1 equiv of DCC and 1 equiv of
HBF4ÆOEt2, and (c) after deprotonation with 1 equiv of Et3N; in
acetonitrile (5.0 · 10�4 M) containing 0.1 M Bu4NClO4 at a platinum
working electrode with a scan rate 100 mV/s under argon.
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Figure 1. Molecular structure of 1 (hydrogen atoms are omitted for
clarity). Selected bond distances (Å) and angles (deg): C(1)–C(51),
1.467(4); C(51)–O(1), 1.211(3); C(51)–N(1), 1.416(4); N(1)–C(61),
1.440(3); C(2)–C(1)–C(51), 127.3(3); C(5)–C(1)–C(51), 124.6(3); C(1)–
C(51)–N(1), 116.0(3); C(1)–C(51)–O(1), 123.7(3); O(1)–C(51)–N(1),
120.2(3); C(51)–N(1)–C(52), 124.3(2); C(51)–N(1)–C(61), 117.7(2).
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planes of the C(51)–N(1)–C(52) bond and the pyridyl
ring was observed probably due to the electronic repul-
sion between the lone pair of the carbonyl oxygen and
the lone pair of the pyridyl nitrogen, resulting in the pyr-
idyl ring almost perpendicular to the Cp ring (83.5� for
N(2)–C(61)–C(62)–C(63)–C(64)–C(65) and C(1)–C(2)–
C(3)–C(4)–C(5), 96.4� for N(2)–C(61)–C(62)–C(63)–
C(64)–C(65) and C(11)–C(12)–C(13)–C(14)–C(15)). In
this conformation, the upfield chemical shift for the pro-
ton of the C(62) atom was observed in the 1H NMR
spectrum.

The redox properties of 1 were investigated by cyclic
voltammetry. As shown in Figure 2, the imide-bridged
bisferrocene 1 in the presence of 1 equiv of N,N 0-di-
cyclohexylcarbodiimide (DCC)8 in acetonitrile exhibited
two one-electron redox waves (E1/2 = 244 and 291 mV
versus Fc/Fc+),9 which are assigned to the successive
one-electron oxidation processes of the ferrocenyl moie-
ties (Fig. 2a). Probably, the wave splitting could be
explained by the electronic communication between
the two ferrocene units. Upon addition of 1 equiv of
HBF4ÆOEt2 to this solution, a new slightly broad redox
wave appeared at 333 mV versus Fc/Fc+ (Fig. 2b), indi-
cating a diminished extent of the electronic communica-
tion. The protonation associated with BF4

� counterion
might affect the interaction between the two ferrocenyl
moieties. The redox wave is shifted in the anodic direc-
tion due to the increase of the electron-withdrawing nat-
ure of the imide bridging spacer by protonation. The
down-field shift of the pyridyl protons was observed
upon the addition of 1 equiv of HBF4ÆOEt2 in the 1H
NMR spectrum of 1, suggesting the protonation of the
pyridyl nitrogen. Also, the absorbance of the ferrocenyl
moieties of 1 (462 nm) was shifted to 488 nm upon the
addition of 1 equiv of HBF4ÆOEt2 in the UV–vis spec-
trum of 1. These findings suggest the regulation of the
electronic communication between the two ferrocenyl
moieties by protonation. Noteworthy is that deprotona-
tion with 1 equiv of Et3N resulted in the original cyclic
voltammogram of 1 (Fig. 2c), indicating the reversibility
of the regulation of the electronic communication.

In conclusion, structural characterization of the imide-
bridged diferrocene was demonstrated to provide a pro-
tonation-controlled regulation system for the electronic
communication. The present fundamental system may
be related to useful electrical materials.
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